Progress on inverse pyrolysis modelling with ensemble learning methods

Patrick Lauer

University of Wuppertal

lauer@uni-wuppertal.de

Content

- 1. Content
- What is pyrolysis?
 New approach
 Method

- 5. Process
- 6. Results
- 7. Advantages over other methods8. What is ET?
- 9. Outlook
- 10. References

What is pyrolysis?

Burning of solids can be separated in two phases:

- Thermochemical decomposition of solid material and phase change from solid to gas phase (Pyrolysis)
- Chemical reaction in the gas phase (Combustion)

To predict fire spread, we need to model burning of solids, hence pyrolysis.

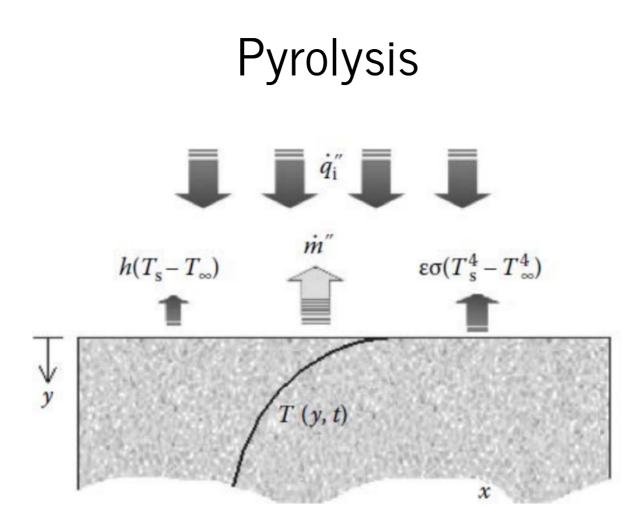


Figure 1. [Schematic of pyrolysis [12]]

How do we model pyrolysis? Boundary condition

$$-k_{s,1}\frac{T_{s,1}^{n+1} - T_{s,0}^{n+1}}{\delta x_{\frac{1}{2}}} = \dot{q}_c'' + \dot{q}_r'' \tag{1}$$

Heat conduction

$$\rho_s c_s \frac{\partial T_s}{\partial t} = \frac{\partial}{\partial x} (k_s \frac{\partial T_s}{\partial x}) + \dot{q}_s^{\prime\prime\prime}$$
(2)

Reaction rate:

$$r = AY^n \cdot e^{-\frac{E_a}{RT}} \tag{3}$$

Parameter overview

Parameter

Activation energie	E_a
Pre-exponential factor	A
Reaction order	n
Density	ρ
Conduction coefficient	k
Heat capacity	c

How do we get these parameters?

Find parameters with small scale experiments and mathematical fitting, scale up to parts and devices

Usual experiments:

- Thermogravimetrical analysis
- Cone calorimeter
- Micro combustion calorimeter
- ...

Approaches

- Forwad fitting
 - Basic graphical fitting [5, 6, 10]
 - Advanced automated fitting [3]
- Inverse modeling [11]
 - Optimization algorithms [1, 8]
 - Machine learning

History of my presentations at PhD seminar

- Optimization algorithms in fire simulation (Geneva, 2017)
- Progress on using optimization algorithms in fire simulation (Wuppertal, 2017)
- No more hacks and workarounds? Get your data processing straight with a little help from your friends (Berlin, 2018)

New approach

Machine Learning (supervised)

- Neural networks
- Ensemble learning
- Stochastic regression
- ...

Supervised learning concept

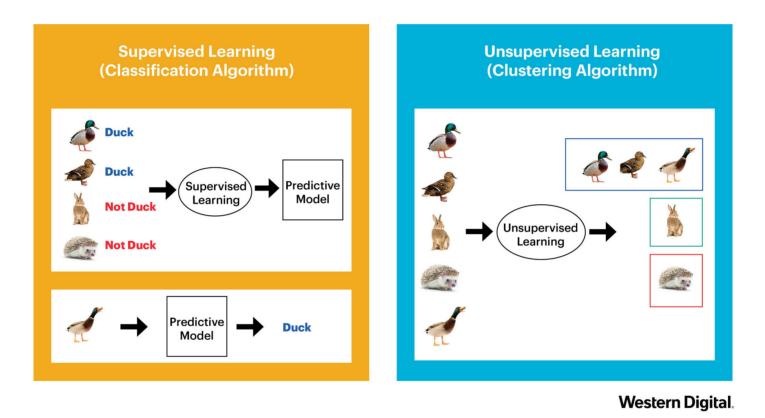


Figure 2. Supervised vs. unsupervised learning (https://blog.westerndigital.com/machine-learning-pipeline-object-storage/)

Method

- Train a model to predict reaction kinetic parameters with given reaction rate
- Case study: mockup TGA experiment with constant heating rate
- All data used is randomly generated with the pyrolysis model

Method II

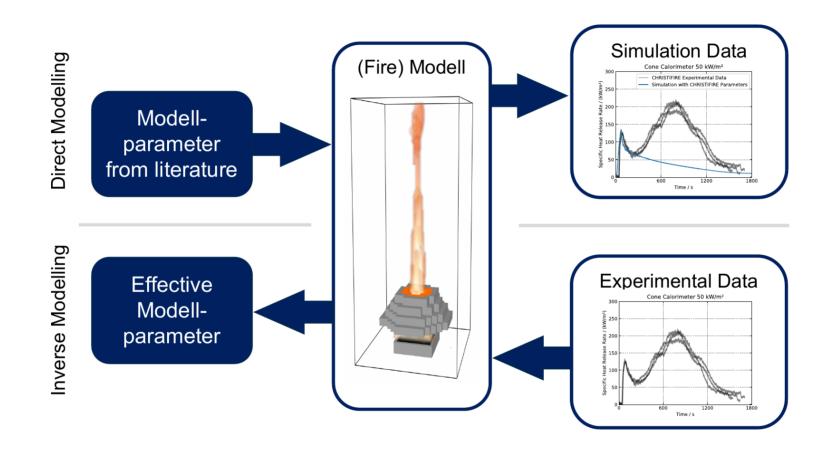


Figure 3. Invers modelling then

Method III

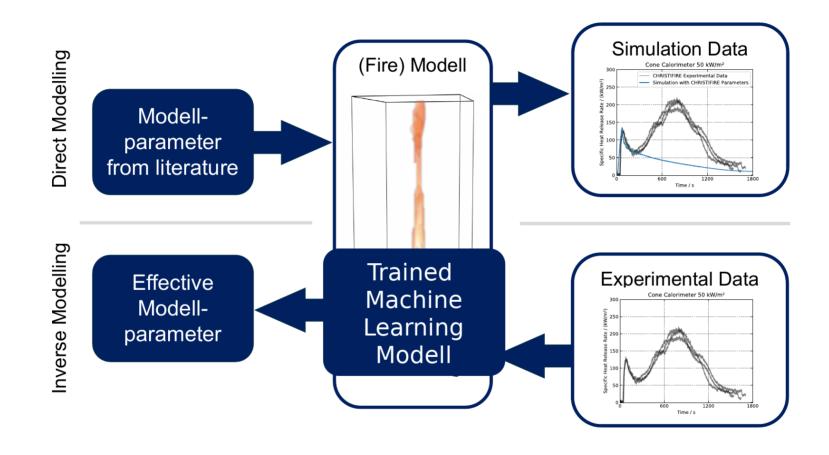


Figure 4. Invers modelling now

Process

- 1. Generating sample data set with the regarding model
 - Samples for 1, 2 and 3 reactions, with 3 heating rates applied each
 - Up to 500k samples generated, with r(T) and A_n , E_n
- 2. Splitting data set in two independent sets (75 % training data set and 25 % validation data set)

Process II

3. Train model with training data set

- Input: $r(T)_{train}$
- Output: $A_{n,train}$, $E_{n,train}$
- Model adopts to transform input to output
- 4. Validate trained model by feeding $r(T)_{prescribed}$ of validation data set and check for expected outcome

Process III

5. Recalculate $r(T)_{predicted}$ with A_n , E_n , calculate RMSE between $r(T)_{validation}$ and $r(T)_{predicted}$

Process IV

- 6. Evaluate
- 7. Repeat with different algorithms and different hyperparameter settings

Results

- Results for predicting kinetic parameters for 2 reactions with 3 heating rates tested
- Different algorithms with different hyperparameter settings
 - AdaBoost (ADA) [4], Extra Trees (ET) [7], Random Forests (RF)[2], Stochastic Gradient Descent (SGD) [9]
- Sample size 100k...500k (total)
- Total generated inverse models: 1900

Results II

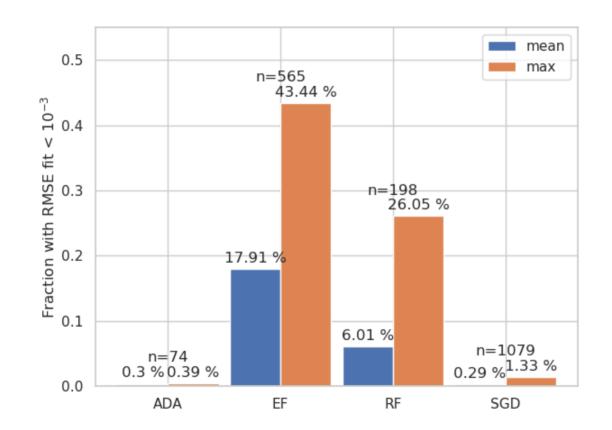


Figure 5. Model results with RMSE fit < 10^{-3} for 2 reactions with 3 heating rates

Results III

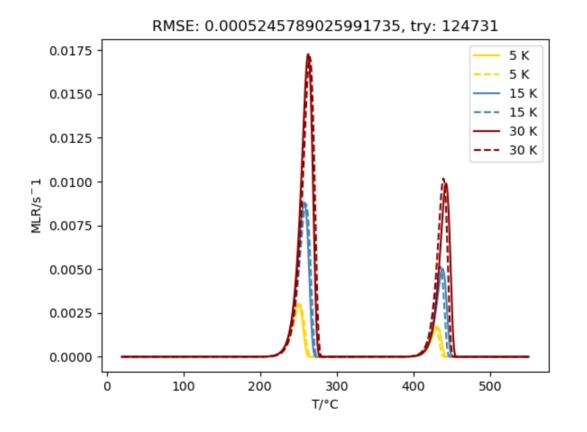


Figure 6. Random example with ET

Advantages over other methods

- Trained model is fast (instant result)
- Trained model is portabel
- Results are pretty good (by now in 43 % of presented case)
 - better for 1 reaction
 - worse for 3 reactions
- If no perfect fit was found, it is at least a good starting point for other methods

Disadvantages over other methods

- Generating samples is costly
- Training a model is costly
- Results are only good in 43 % of presented case

What is ET?

- Extremely randomized trees (Extra trees) is a tree based ensemble method and a modified variant of random forest
- Uses randomized, uncorrelated decision trees
- Efficient for big data sets
- Fast training

Outlook

- Couple with Heat conduction
- Use larger sample data sets
- Try with different Pyrolysis models
- Validate with real data
- Compare to other machine learning models

References

[1] Lukas Arnold, Tristan Hehnen, Patrick Lauer, Corinna Trettin, and Ashish Vinayak. "PROPTI-A Generalised Inverse Modelling Framework." In *Journal of Physics: Conference Series*, 1107:032016. IOP Publishing. 2018. p

[2] Leo Breiman. "Random Forests." Machine Learning 45 (1). Springer: 5–32. 2001.

- [3] Morgan C Bruns, and Isaac T Leventon. "Automated Fitting of Thermogravimetric Analysis Data." In . Interflam. 2019. »
 - [4] Harris Drucker. "Improving Regressors Using Boosting Techniques." In *ICML*, 97:107–115. 1997. *p*
 - [5] Joseph H Flynn, and Leo A Wall. "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data." *Journal of Polymer Science Part C: Polymer Letters* 4 (5). Wiley Online Library: 323–328. 1966.
 - [6] Henry L Friedman. "New Methods for Evaluating Kinetic Parameters from Thermal Analysis Data." Journal of Polymer Science Part C: Polymer Letters 7 (1). Wiley Online Library: 41–46. 1969. p

^[7] Diarra Courte Damion Ernst and Louis Mohankal "Extramaly Dandomized Trace" Machine